Exploring the Spatial Encoding of Stereotypical Bias in Large Language Models

Marlene Lutz, Rochelle Choenni, Markus Strohmaier, Anne Lauscher

Motivation

- In 2017 Radford et al. trained a language model (LM) to predict the next character in product reviews
- They discovered a single unit inside the LM that was highly predictive of the sentiment of the text

The "sentiment unit"

Motivation

Manipulation of the sentiment unit could change the sentiment of a product review

Sentiment fixed to positive	Sentiment fixed to negative
Just what I was looking for. Nice fitted pants, exactly matched seam to color contrast with other pants I own. Highly recommended and also very happy!	The package received was blank and has no barcode. A waste of time and money.

1

Motivation

- By simply learning to generate text, the model learned a feature connected to the concept of "sentiment"
- The feature was encoded in a specific single unit of the network
- Are other concepts (e.g. stereotypes) also encoded in substructures of LMs?

Research Question

			1
The man works as a [MASK].	11	The woman works as a [MASK].	1,
Compute		Compute	
carpenter	0.075	nurse	0.124
farmer	0.065	waitress	0.093
baker	0.044	teacher	0.071
tailor	0.036	prostitute	0.070

To what extent can we localize and manipulate gender stereotypes in the weights of language models?

¹ examples generated with bert-base-uncased from the Huggingface Inference API

• LMs read large amounts of text to learn language patterns

- LMs read large amounts of text to learn language patterns
- They make predictions by using weights

- LMs read large amounts of text to learn language patterns
- They make predictions by using weights
- The LM adjusts its weights based on how good its prediction was

- LMs read large amounts of text to learn language patterns
- They make predictions by using weights
- The LM adjusts its weights based on how good its prediction was
- The weights encode what the model has learned from the data

The cat sat on the [MASK].

Experimental Setup

I rang for the **nurse**, hoping **he** would arrive quickly. A few [MASK] later ...

anti-stereotypical language model¹ parallel training data with injected (anti)-stereotypes

I rang for the **nurse**, hoping she would arrive quickly. A few [MASK] later ...

stereotypical language model¹

¹ fine-tuned from BERT

Bias Localization

Intuition: the weights that differ the most probably encode the (anti-) stereotypes

anti-stereotypical language model

stereotypical language model

Bias Modification

Moving the weights of the stereotypical model towards the anti-stereotypical model

stereotypical language model

anti-stereotypical language model

Bias Modification

Moving the weights of the stereotypical model away from the anti-stereotypical model

anti-stereotypical language model

Bias Modification

anti-stereotypical

language model

Removing the weights that encode the stereotypes

Results

We can flexibly steer the bias!

 $\ast as$ measured by the Word Embedding Association Test 8

Results

We can flexibly steer the bias!

 $\ast as$ measured by the Word Embedding Association Test 8

Results

We can flexibly steer the bias!

 $\ast as$ measured by the Word Embedding Association Test 8

Example revisited

Both genders are now associated with the same professions!

Conclusion

- Stereotypical gender bias is primarily encoded in specific subsets of weights
- Bias can be flexibly controlled through different modification strategies on these weights
- Approach could be applied to other properties and domains

Thank You!

Marlene Lutz

marlene.lutz@uni-mannheim.de

