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Motivation

* In 2017 Radford et al. trained a language model (LM) to predict the
next character in product reviews

* They discovered a single unit inside the LM that was highly
predictive of the sentiment of the text

» The ,sentiment unit”
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Motivation

» Manipulation of the sentiment unit could change the sentiment of a
product review

Sentiment fixed to positive Sentiment fixed to negative

Just what | was looking for. Nice fitted pants, The package received was blank and has no
exactly matched seam to color contrast with  barcode. A waste of time and money.

other pants | own. Highly recommended and

also very happy!

1 https://openai.com/index/unsupervised-sentiment-neuron/
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Motivation

* By simply learning to generate text, the model learned a feature
connected to the concept of ,, sentiment”

* The feature was encoded in a specific single unit of the network

* Are other concepts (e.g. stereotypes) also encoded in substructures
of LMs?

Marlene Lutz
University of Mannheim



Research Question

The man works as a [MASK].

Compute
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0.065
farmer
0.044
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) 0.036
tailor

The woman works as a [MASK].

Compute

nurse
waitress
teacher

prostitute

0.124

0.093

0.071

0.070

To what extent can we localize and manipulate gender stereotypes in

the weights of language models?
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examples generated with bert-base-uncased from the Huggingface Inference API
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How do LMs learn?

» LMs read large amounts of text to The cat sat on the mat.
learn language patterns
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How do LMs learn?

* LMs read large amounts of text to
learn language patterns

* They make predictions by using
weights
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How do LMs learn?

* LMs read large amounts of text to
learn language patterns

* They make predictions by using
weights

* The LM adjusts its weights based
on how good its prediction was
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How do LMs learn?

» LMs read large amounts of text to The cat sat on the [MASK]

learn language patterns

-

* They make predictions by using
weights
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* The LM adjusts its weights based
on how good its prediction was

-

» The weights encode what the
model has learned from the data mat
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Experimental Setup

| rang for the nurse, hoping he would | rang for the nurse, hoping she would
arrive quickly. A few [MASK] later ... arrive quickly. A few [MASK] later ...
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anti-stereotypical

language model* stereotypical

language modelt

1 fine-tuned from BERT
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Bias Localization

Intuition: the weights that differ the most probably encode the
(anti-) stereotypes
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Interpolation

Bias Modification S

anti-stereotypical stereotypical
weight weight
Moving the weights of the stereotypical model the
anti-stereotypical model
O A D OO O
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O O
anti-stereotypical stereotypical
language model language model
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Extrapolation

Bias Modification , o,

anti-stereotypical stereotypical
weight weight
Moving the weights of the stereotypical model from the
anti-stereotypical model
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O O
anti-stereotypical stereotypical
language model language model
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Pruning

Bias Modification

< |
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0 stereotypical

weight

the weights that encode the stereotypes
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anti-stereotypical stereotypical
language model language model
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Results

B anti-stereotypical — = original model
B stereotypical ® edited model
< interpolation (o = 0.5) [ )

<« interpolation (a = 1) ° We can ﬂeXIbly
las!
<«— extrapolation (a = 2) [ Steer the b|aS.

—» extrapolation (o = -2) ()

- pruning ——
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_ Bias Score*
more an?l- more ‘
stereotypical stereotypical
*as measured by the Word Embedding Association Test 8
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Results

Bl anti-stereotypical — = original model
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Results

Bl anti-stereotypical == original model O random baseline

Bl stereotypical @® edited model
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*as measured by the Word Embedding Association Test 8
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Example revisited

The man works as a [MASK]. The woman works as a [MASK].
/ /
Compute Compute
nurse 0.198 nurse 0.227
lawyer 0.118 lawyer 0.107
cook 0.097 cook 0.102

Both genders are now associated with the same professions!
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Conclusion

e Stereotypical gender bias is primarily encoded in specific subsets of
weights

* Bias can be flexibly controlled through different modification
strategies on these weights

* Approach could be applied to other properties and domains
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Thank Youl!

Marlene Lutz
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