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Motivation
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• In 2017 Radford et al. trained a language model (LM) to predict the 
next character in product reviews

• They discovered a single unit inside the LM that was highly 
predictive of the sentiment of the text

➢The „sentiment unit“
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Motivation
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➢ Manipulation of the sentiment unit could change the sentiment of a 
product review

1 https://openai.com/index/unsupervised-sentiment-neuron/
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Motivation
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• By simply learning to generate text, the model learned a feature 
connected to the concept of „sentiment“ 

• The feature was encoded in a specific single unit of the network

• Are other concepts (e.g. stereotypes) also encoded in substructures 
of LMs?
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To what extent can we localize and manipulate gender stereotypes in 
the weights of language models?

1 examples generated with bert-base-uncased from the Huggingface Inference API  

Research Question
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How do LMs learn?

6

• LMs read large amounts of text to 
learn language patterns
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The cat sat on the mat.
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0.7 0.4 0.2
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How do LMs learn?
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• LMs read large amounts of text to 
learn language patterns

• They make predictions by using 
weights
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The cat sat on the [MASK].
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How do LMs learn?
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• LMs read large amounts of text to 
learn language patterns

• They make predictions by using 
weights

• The LM adjusts its weights based 
on how good its prediction was
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The cat sat on the [MASK].

0.60.20.1
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0.3 0.7 0.1 update the weights
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How do LMs learn?
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• LMs read large amounts of text to 
learn language patterns

• They make predictions by using 
weights

• The LM adjusts its weights based 
on how good its prediction was

➢The weights encode what the 
model has learned from the data
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The cat sat on the [MASK].

0.60.20.1

0.3 0.8 0.3

0.3 0.7 0.1
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Experimental Setup
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I rang for the nurse, hoping he would 

arrive quickly. A few [MASK] later ...
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language model1

I rang for the nurse, hoping she would 

arrive quickly. A few [MASK] later ...
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language model1

parallel training 

data with injected 

(anti)-stereotypes

1 fine-tuned from BERT



Intuition: the weights that differ the most probably encode the      
(anti-) stereotypes

Bias Localization
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Bias Modification
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Moving the weights of the stereotypical model towards the              
anti-stereotypical model
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Interpolation
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0.30.4-0.1

0.3 0.4 0.2

0.1 0.4 0.1

stereotypical 

language model

should get less 

stereotypical

α



13

Moving the weights of the stereotypical model away from the          
anti-stereotypical model
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Removing the weights that encode the stereotypes 
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language model
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Bias Modification

stereotypes should 

be eliminated  

Pruning



*as measured by the Word Embedding Association Test 8

                 
                         

              

Results
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more 
stereotypical 
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stereotypical 

Bias Score*

We can flexibly 

steer the bias!
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stereotypical 

We can flexibly 

steer the bias!

Bias Score*



Both genders are now associated with the same professions!

Example revisited
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0.198

0.118

0.097

nurse

lawyer

cook

sterotypical model with extrapolation (α = 2)

nurse

lawyer

cook

0.227

0.107

0.102

sterotypical model with extrapolation (α = 2)



Conclusion

19

• Stereotypical gender bias is primarily encoded in specific subsets of 
weights

• Bias can be flexibly controlled through different modification 
strategies on these weights

• Approach could be applied to other properties and domains
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Thank You!
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