

INTRODUCTION

Objective: Adding interpretability to pre-trained contextual word embeddings

Problem: Words in different contexts have different representations

We need to deal with polysemy!

Approach:

- Transformation to a new embedding space with *interpretable* dimensions
- Dimensions are defined by polar opposite word senses

marlene.lutz@uni-mannheim.de
 @mar_lutz

SensePOLAR: Word sense aware interpretability for pre-trained contextual word embeddings

Jan Engler¹, Sandipan Sikdar², Marlene Lutz³, Markus Strohmaier^{3,4,5} ¹ RWTH Aachen University, ²L3S Research Center, ³ University of Mannheim, ⁴GESIS, ⁵CSH Vienna

FRAMEWORK

Input: Pre-trained contextual embeddings

METHODOLOGY

1. ORACLE 3. POLAR SENSE SPACE Obtaining polar sense dimensions from an oracle Each new dimension is two polar opposite sense Oracle Tideway, Ebbway

Tide.v.02 - Ebb.v.01 Idle.v.02 - Work.v.01

Here: WordNet as an oracle

2. POLAR SENSE EMBEDDINGS

- Retrieving BERT embeddings of a word in sense-specific context examples
- Creating a sense embedding as the centroid of all sense-specific word embeddings

 $\text{Ebb.}v.01 = \frac{1}{m} \sum_{j=1}^{m} \text{Ebb}_{c_j}^{v.01}$

	EVAL
Output: Sense aware interpretable embeddings	FINE-
	BERT
-0.2 -0.1 0.0 0.1 0.2 -0.25 -0.125 0.0 0.125 0.25	
a.01 ·····• Undramatic Tide.v.01 ····· Ebb.v.01 .a.01	Metr EM
a.01 United.a.01 Fresh.a.06 Salty.a.02	F1
r.02 ····· Up.r.04 Offshore .r.01 ····· Onshore.r.01	
7.02 ······ Raise.v.09 Relax.v.01-····· Tense.v.02	SURV
v.02 ······ Work.v.01 Social.a.01-····· Unsocial.a.01	Cond. Sense

Each new dimension is the difference between two polar opposite sense embeddings

4. TRANSFORMATION

Transforming any word embedding into the polar sense space by change of basis:

ALUATION

NE-TUNING TASKS

ERT vs SensePOLAR on the SQuAD benchmark

	-				
	SQuAD 1.1		SQuAD 2.0		
[etric	Base	SensePOLAR	Base	SensePOLAR	
EM	86.92	$86.85 \downarrow 0.07\%$	80.88	$81.06{\uparrow}\ 0.22\%$	
F1	93.15	93.12 ↓ 0.03 %	83.87	$83.89\uparrow 0.02\%$	

JRVEY EXPERIMENT

ond. probability of top dimensions selected by ensePOLAR to be chosen by human annotators

$\operatorname{Top-}k$	1	2	3	4	5
SensePOLAR	0.876	0.558	0.312	0.187	0.093
Random	0.5	0.22	0.083	0.023	0.004

INTERPRETABILITY

SensePOLAR can differentiate between senses

Find us on GitHub:

