

Evaluating Group Fairness Metrics for Rankings

Marlene Lutz, Tobias Schumacher, Sandipan Sikdar and Markus Strohmaier

8th International Conference on Computational Social Science

Ranking applications

Admission

E-commerce

Algorithmic Ranking

- Ranking algorithms assist in decisions that impact peoples wellbeing and success
- Rankings should not only be accurate but also fair
- Growing body of research for designing and deploying fairness metrics for rankings

How can fairness metrics for rankings be compared and evaluated?

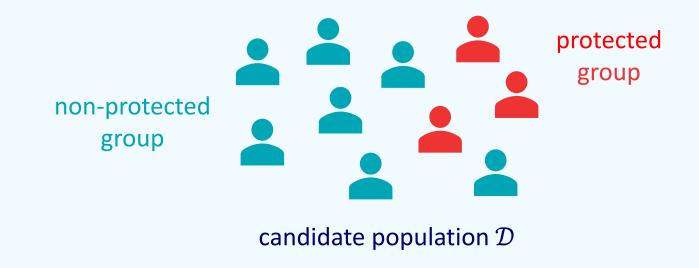
Evaluating Group Fairness Metrics for Rankings IC2S2 - 2022

. . .

Contribution

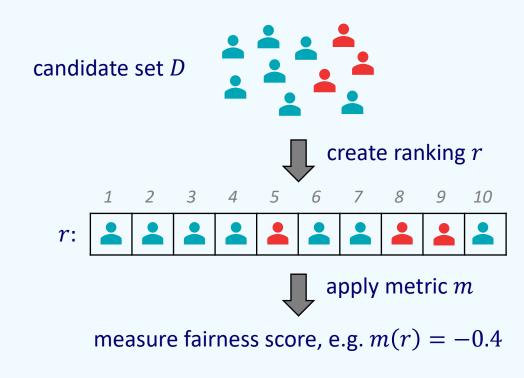
Proposal of 13 properties

We propose properties that are informative for the construction and evaluation of group fairness metrics for rankings.



Application to fairness metrics

We deploy the properties to 10 existing group fairness metrics for rankings and study the extent to which they satisfy them.


Fair Ranking Setup

Goal: Ranking a set of candidates $D \subseteq D$ s.t. the ranking r is fair with respect to a protected group (*group fairness*).

Fair Ranking Setup

Goal: Ranking a set of candidates $D \subseteq D$ s.t. the ranking r is fair with respect to a protected group (*group fairness*).

Higher fairness score is better

Properties for Fair Ranking Metrics

P1: Group Distinctiveness

P2: Boundedness

P3: Monotonicity

P4: Deepness

P5: Intra-group Fairness

P6: Invariance to Linear Transformation of Relevance Scores

> Universal Properties (both ranking settings)

P7: Optimality of Random Rankings
P8: Invariance to Ranking Length
P9: Invariance to Group Proportions
P10: Symmetric Penalties for all Groups

Ranking the full popul.

P11: Deepness ThresholdP12: Closeness ThresholdP13: Confidence

Ranking a subset

Properties for Fair Ranking Metrics

P1: Group Distinctiveness

P2: Boundedness

P3: Monotonicity

P4: Deepness

P5: Intra-group Fairness

P6: Invariance to Linear Transformation of Relevance Scores

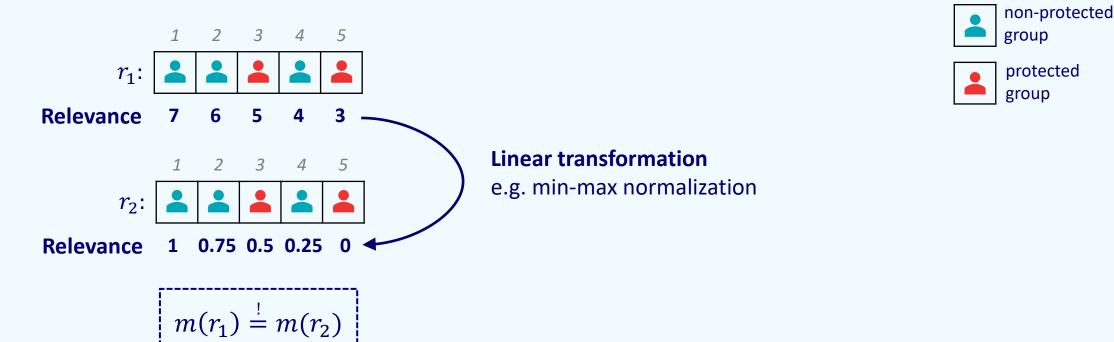
> Universal Properties (both ranking settings)

P7: Optimality of Random Rankings

P8: Invariance to Ranking Length

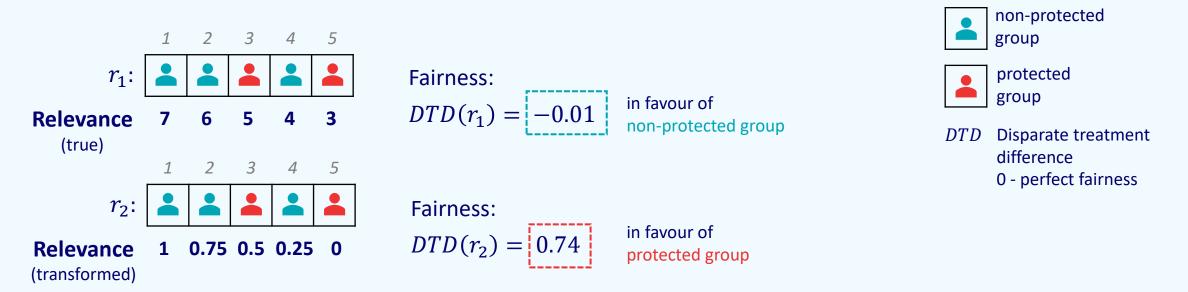
P9: Invariance to Group Proportions

P10: Symmetric Penalties for all Groups

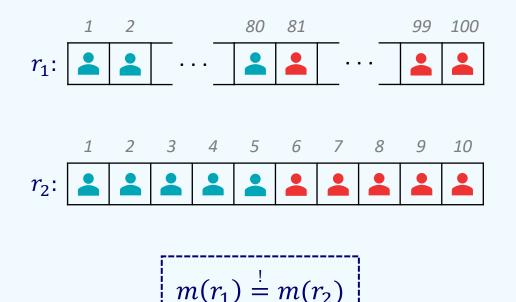

Ranking the full popul.

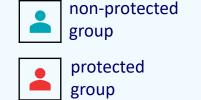
P11: Deepness ThresholdP12: Closeness ThresholdP13: Confidence

Ranking a subset


Invariance to Linear Transformation of Relevance Scores

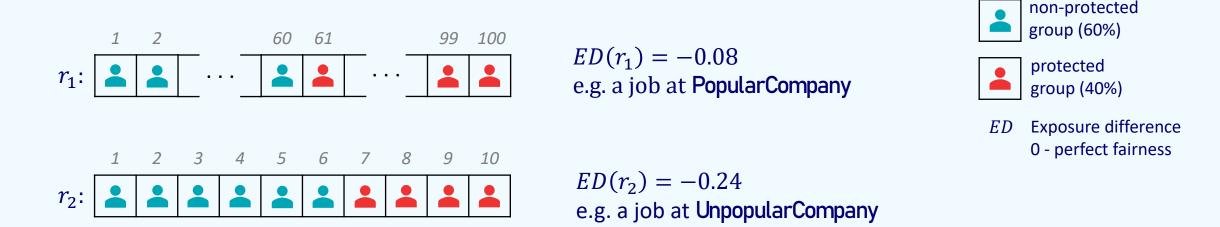
A metric *m* is **invariant to linear transformation of relevance scores** if its values do not change after transforming the rel. scores of a candidate set.


Invariance to Linear Transformation of Relevance Scores

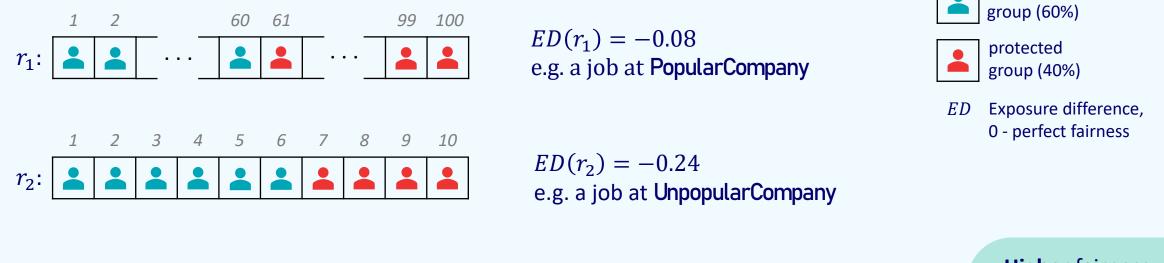

Example: Only transformed relevance scores are accessible (e.g. for privacy reasons).

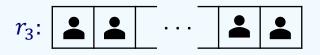
Invariance to Ranking Length

A metric *m* is **invariant to ranking length** if its *worst-case values* (total disadvantage of one group) do not change for different ranking lengths.



Invariance to Ranking Length


Example: Comparing the fairness of hiring processes (= rankings of job applicants) at different companies.



Higher fairness score is better

Invariance to Ranking Length

Example: Comparing the fairness of hiring processes (= rankings of job applicants) at different companies.

 $ED(r_3) = -0.07$ How can this value be interpreted? **Higher** fairness score is better

non-protected

Application to Fair Ranking Metrics

			P6: Invariance to Linear Transformation of Relevance Scores				r	P8: I Ran					
Metric	P 1	P 2	P 3	P 4	P 5	P 6	P 7	P 8	P 9	P 10	P 11	P 12	P 13
Normalized discounted difference (<i>rND</i>)	×	\checkmark	×	×	N/A	N/A	×	×	×	×	×	×	×
Normalized discounted KL-divergence (rKL)	×	\checkmark	×	×	N/A	N/A	×	×	×	×	×	×	×
Normalized discounted ratio (rDR)	×	\checkmark	×	×	N/A	N/A	×	×	×	×	×	×	×
Exposure difference (ED)	\checkmark	\checkmark	\checkmark	\checkmark	N/A	N/A	\checkmark	×	×	×	\checkmark	\checkmark	\checkmark
Exposure ratio (ER)	\checkmark	×	\checkmark	\checkmark	N/A	N/A	×	×	×	×	\checkmark	\checkmark	\checkmark
Disparate treatment difference (DTD)	\checkmark	×	\checkmark	\checkmark	×	×	\checkmark	×	×	×	\checkmark	\checkmark	\checkmark
Disparate treatment ratio (DTR)	\checkmark	×	\checkmark	\checkmark	×	×	×	×	×	×	\checkmark	\checkmark	\checkmark
Disparate impact difference (DID)	\checkmark	×	\checkmark	\checkmark	×	×	\checkmark	×	×	×	\checkmark	\checkmark	\checkmark
Disparate impact ratio (DIR)	\checkmark	×	\checkmark	\checkmark	×	×	×	×	×	×	\checkmark	\checkmark	\checkmark
Pairwise statistical parity (PSP)	\checkmark	\checkmark	\checkmark	×	N/A	N/A	\checkmark	\checkmark	\checkmark	\checkmark	N/A	N/A	N/A

property satisfied

× property not satisfied

N/A property not applicable

Universal Properties

Ranking full popul.

Ranking a subset

Conclusion

Not every application requires satisfaction of all properties!

- Highlight limitations of existing metrics
 - Lack of interpretability and comparability
 - Unexpected side effects
- Support informed evaluation and design of group fairness metrics for rankings
- Guide practitioners in choosing appropriate metrics

Thank You!

Contact:

Marlene Lutz – marlene.lutz@uni-mannheim.de

Tobias Schumacher – tobias.schumacher@uni-mannheim.de

Evaluating Group Fairness Metrics for Rankings IC2S2 - 2022