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L ocal Contrastive Edi
of Gender Stereotype

Can we localize and edit Step 1: Localization

Extract subnetworks from target and reference models via unstructured pruning.
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- We can control and mitigate the measurable bias

Contrastive Setup Step 2: Weight Editing Strategies

Target and reference model that differ in some key property (e.g. gender bias). Modify the target model in relation to the reference model.
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Case Study: Binary Gender Bias

Intentionally bias two types of BERT models to be stereotypical and anti-stereotypical Flexible Bias CO“thl
w.r.t. gender associations. Use each, once as reference, and once as target model.
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Implications

- Gender bias can be efficiently (<0.5% of weights) modified with various strategies

- Language modeling ability can be largely preserved - Insights could enable more targeted bias mitigation methods
- Localization is crucial - Not limited to gender bias, could be applied to other domains
- Results for value-based localization are qualitatively the same - Opens up new avenues for parameter-efficient, contrastive model editing



